

Mathematics (9709)

Paper 4: Mechanics 1 (M1)

2020-2021

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

MATHEMATICS 9709/42

Paper 4 Mechanics February/March 2020

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Blank pages are indicated.

(a)	Find the power of the lorry's engine.	[1]
		•••••
		•••••
		•••••
b)	There is a constant resistance force acting on the lorry of magnitude 2400 N.	
	Find the acceleration of the lorry at an instant when its speed is $25 \mathrm{ms^{-1}}$.	[3]
		••••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

(a)	Find the time it takes for <i>P</i> to travel a distance of 1.44 m from its starting point.	
()	The the time is times for the transfer of the	
		•••••
		•••••
(b)	Find μ .	
		•••••
		•••••
		•••••
		•••••

The diagram shows the vertical cross-section of a surface. A, B and C are three points on the cross-section. The level of B is C is C in above the level of C is C in below the level of C is C in below the level of C is C in a particle of mass C is projected up the slope from C with initial speed C in C.

a)	Given that the particle reaches B with a speed of $3 \mathrm{ms^{-1}}$ and that there is no resistance force find h .

Find the speed of the particle when it reaches C.				E: 1 41
		en it reaches C.	speed of the particle when	ring the spee
	 			•••••
	 			••••
	 			••••••

C.	cyclist travels along a straight road with constant acceleration. He passes through points A , B and B are B and B and B and B and B and B are B are B and B are B are B and B are B and B are B are B and B are B are B and B are B and B are B are B are B and B are B are B are B and B are B are B and B are B are B are B are B and B are B are B are B and B are B are B are B are B and B are B and B are B are B and B are B and B are B are B and B are B are B a
(a)	Find the acceleration of the cyclist. [5

(b)	Find AC . [2]

Coplanar forces, of magnitudes F N, 3 N, 6 N and 4 N, act at a point P, as shown in the diagram.

(a)	Given that $\alpha = 60$, and that the resultant of the four forces is in the direction of the 3 N force find F .

••	•••••
••	
••	•••••
••	 •••••
٠.	•••••
••	
••	•••••
••	•••••
••	
••	
••	
••	 •••••
••	 •••••
•	
٠.	
••	

mas a de	a straight horizontal test track, driverless vehicles (with no passengers) are being tested. A car of $s 1600 kg$ is towing a trailer of mass $700 kg$ along the track. The brakes are applied, resulting in sceleration of $12 m s^{-2}$. The braking force acts on the car only. In addition to the braking force are constant resistance forces of $600 N$ on the car and of $200 N$ on the trailer.
(a)	Find the magnitude of the force in the tow-bar. [2]
(b)	Find the braking force. [2]

(c)	At the instant when the brakes are applied, the car has speed $22 \mathrm{m s^{-1}}$. 17.5 m away from a stationary van, which is directly in front of the car.	At this instant the car is
	Show that the car hits the van at a speed of 8m s^{-1} .	[2]
(d)	After the collision, the van starts to move with speed $5 \mathrm{m s^{-1}}$ and the moving in the same direction with speed $2 \mathrm{m s^{-1}}$.	car and trailer continue
	Find the mass of the van.	[3]

7	A particle moves in a straight time <i>t</i> s is <i>s</i> m, where	line through the po	oint O . The displacement of the particle from O at
		$s = t^2 - 3t + 2$	for $0 \le t \le 6$,
		$s = \frac{24}{t} - \frac{t^2}{4} + 25$	for $t \ge 6$.

Find the value of t when the particle is instantaneously at rest during the first 6 seconds of i motion.
Find the velocity with which the particle arrives at P and also the velocity with which the particle
Find the velocity with which the particle arrives at P and also the velocity with which the particle leaves P .
Find the velocity with which the particle arrives at P and also the velocity with which the particle are P .
Find the velocity with which the particle arrives at P and also the velocity with which the particle leaves P .
Find the velocity with which the particle arrives at P and also the velocity with which the particle leaves P .
Find the velocity with which the particle arrives at P and also the velocity with which the particle leaves P .
Find the velocity with which the particle arrives at P and also the velocity with which the particle leaves P .
Find the velocity with which the particle arrives at P and also the velocity with which the particle leaves P .
Find the velocity with which the particle arrives at P and also the velocity with which the particle leaves P .
Find the velocity with which the particle arrives at P and also the velocity with which the particle leaves P .

••	
••	
•	
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/41

Paper 4 Mechanics May/June 2020

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use $10 \,\mathrm{m\,s^{-2}}$.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Blank pages are indicated.

BLANK PAGE

Three coplanar forces of magnitudes 100 N, 50 N and 50 N act at a point A, as shown in the diagram. The value of $\cos \alpha$ is $\frac{4}{5}$.

Find the magnitude of the resultant of the three forces and state its direction.	[3]

	stance forces of 250 N on the car and 100 N on the trailer.
(a)	Find the tension in the tow-bar. [2
(b)	Find the power of the engine of the car at the instant when the speed is $20 \mathrm{ms^{-1}}$.

(a)	Find the greatest height above the ground reached by P .
(b)	Find the length of time for which P is at a height of more than 3.6 m above the ground.
(D)	
	1 and the length of time for which T is at a height of more than 3.0 m above the ground.
	Third the length of time for which 7 is at a neight of more than 3.0 in above the ground.

The diagram shows a ring of mass 0.1 kg threaded on a fixed horizontal rod. The rod is rough and the coefficient of friction between the ring and the rod is 0.8. A force of magnitude T N acts on the ring in a direction at 30° to the rod, downwards in the vertical plane containing the rod. Initially the ring is at rest.

Find the greatest value of T for which the ring remains at rest.	[4]

Find the acceleration of the ring when $T = 3$.	
	• • • • • • • • • • • • • • • • • • • •
	••••••
	••••••
	••••••
	••••••
	••••••
	• • • • • • • • • • • • • • • • • • • •
	•••••

A child of mass 35 kg is swinging on a rope. The child is modelled as a particle P and the rope is modelled as a light inextensible string of length 4 m. Initially P is held at an angle of 45° to the vertical (see diagram).

(a)	Given that there is no resistance force, find the speed of <i>P</i> when it has travelled half way a the circular arc from its initial position to its lowest point.	llong [4]
		•••••
		•••••
		•••••
		•••••
		••••••
		••••••
		••••••
		••••••
		••••••
		•••••
		•••••
		••••••

F	$\operatorname{ind} X$.	
••		
••		
••		
••		
•••		
••		
• •		
• •		
•••		
••		
•••		•••••
••		
••		
••		
••		
•••		
• •		
• •		

a)	Find the value of k . Hence find an expression, in terms of t , for the displacement of the particle
а)	from A .

(b)	Find the displacement of the particle from A when its velocity is a minimum.	[4]
		•••••
		•••••
		•••••
		••••••

A particle P of mass 0.3 kg, lying on a smooth plane inclined at 30° to the horizontal, is released from rest. P slides down the plane for a distance of 2.5 m and then reaches a horizontal plane. There is no change in speed when P reaches the horizontal plane. A particle Q of mass 0.2 kg lies at rest on the horizontal plane 1.5 m from the end of the inclined plane (see diagram). P collides directly with Q.

(a)	It is given that the horizontal plane is smooth and that, after the collision, P continues moving in the same direction, with speed $2 \mathrm{m s^{-1}}$.
	Find the speed of Q after the collision. [5]

Find the coefficient of friction between <i>P</i> and the horizontal plane.

Cambridge International AS & A Level

CANDIDATE NAME							
CENTRE NUMBER				CANI NUM	DIDATE BER		

MATHEMATICS 9709/42

Paper 4 Mechanics May/June 2020

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use $10 \,\mathrm{m\,s^{-2}}$.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages. Blank pages are indicated.

A tram starts from rest and moves with uniform acceleration for 20 s. The tram then travels at a constant

(a)	Sketch a velocity-time graph for the motion, stating the total time for which the tram is moving. [2]
7 \	TV 117
(b)	Find V . [2]
(c)	Find the magnitude of the acceleration. [2]

Coplanar forces of magnitudes $20 \,\mathrm{N}$, $P \,\mathrm{N}$, $3P \,\mathrm{N}$ and $4P \,\mathrm{N}$ act at a point in the directions shown in the diagram. The system is in equilibrium.

Find P and θ .	[6]

A particle of mass $2.5 \, \text{kg}$ is held in equilibrium on a rough plane inclined at 20° to the horizontal by a force of magnitude $T \, \text{N}$ making an angle of 60° with a line of greatest slope of the plane (see diagram). The coefficient of friction between the particle and the plane is 0.3.

Find the greatest and least possible values of T .	[8]

Small smooth spheres A and B, of equal radii and of masses 4 kg and 2 kg respectively, lie on a smooth

)	Find the speed of <i>B</i> after the collision.	[2]
		•••••
		••••••
in t v	hird small smooth sphere C , of mass 1 kg and with the same radius as A and B , is at respective. B now collides directly with C . After this collision B continues to move in the same C with one third the speed of C .	
n t v	ne. B now collides directly with C . After this collision B continues to move in the same C	
n V	ne. B now collides directly with C . After this collision B continues to move in the same C with one third the speed of C .	lirection
1	ne. B now collides directly with C . After this collision B continues to move in the same C with one third the speed of C .	lirection
n V	ne. B now collides directly with C . After this collision B continues to move in the same C with one third the speed of C .	lirection
	te. B now collides directly with C . After this collision B continues to move in the same C with one third the speed of C .	lirection
	te. B now collides directly with C . After this collision B continues to move in the same C with one third the speed of C .	lirection
1	ne. B now collides directly with C . After this collision B continues to move in the same C with one third the speed of C .	lirection
n V	ne. B now collides directly with C . After this collision B continues to move in the same C with one third the speed of C .	lirection
n V	ne. B now collides directly with C . After this collision B continues to move in the same C with one third the speed of C .	lirection
n t	ne. B now collides directly with C . After this collision B continues to move in the same C with one third the speed of C .	lirection
an t v	ne. B now collides directly with C . After this collision B continues to move in the same C with one third the speed of C .	lirection
an t v	ne. B now collides directly with C . After this collision B continues to move in the same C with one third the speed of C .	lirection

A and B coalesce during this collision.
Find the total loss of kinetic energy in the system due to the three collisions.

(i) Calculate, in kW, the power developed by the engine of the car.	On a horizontal section of the road, the car has a constant speed of $32\mathrm{ms^{-1}}$ force of 750 N resisting the motion.	and there is a con
(ii) Given that this power is suddenly decreased by 8 kW, find the instantaneous deceleration the car.		
		••••••
		•••••
		•••••
		aneous deceleration

(b)	On a section of the road inclined at $\sin^{-1} 0.096$ to the horizontal, the resistance to the motion of the car is $(1000 + 8v)$ N when the speed of the car is v m s ⁻¹ . The car travels up this section of the road at constant speed with the engine working at 60 kW.
	Find this constant speed. [5]

6	A particle P	moves in a straight line.	The velocity $v \text{m s}^{-1}$	at time t s is given by
---	--------------	---------------------------	-----------------------------------	---------------------------

$$v = 2t + 1$$
 for $0 \le t \le 5$,
 $v = 36 - t^2$ for $5 \le t \le 7$,
 $v = 2t - 27$ for $7 \le t \le 13.5$.

[3]

(a) Sketch the velocity-time graph for
$$0 \le t \le 13.5$$
.

(b)	Find the acceleration at the instant when $t = 6$.	[2]

•••••
•••••
•••••

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/43

Paper 4 Mechanics May/June 2020

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages. Blank pages are indicated.

pı	articles P of mass $m \log$ and Q of mass 0.2 kg are free to move on a smooth horizontal plane. P rojected at a speed of $2 \mathrm{ms^{-1}}$ towards Q which is stationary. After the collision P and Q move posite directions with speeds of $0.5 \mathrm{ms^{-1}}$ and $1 \mathrm{ms^{-1}}$ respectively.
Fi	m.
•••	
•••	
•••	

(a)	Find the driving force when the acceleration of the minibus is $0.5 \mathrm{ms^{-2}}$.	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
(b)	Find the power required for the minibus to maintain a constant speed of $25\mathrm{ms^{-1}}$.	
(b)		

Four coplanar forces of magnitudes $40\,\mathrm{N}$, $20\,\mathrm{N}$, $50\,\mathrm{N}$ and $F\,\mathrm{N}$ act at a point in the directions shown in the diagram. The four forces are in equilibrium.

Find F and α .	[6]

© UCLES 2020 9709/43/M/J/20

4	A car starts from rest and moves in a straight line with constant acceleration $a \mathrm{ms^{-2}}$ for a distance of
	50 m. The car then travels with constant velocity for 500 m for a period of 25 s, before decelerating to
	rest. The magnitude of this deceleration is $2a \mathrm{ms^{-2}}$.

(a) Sketch the velocity-time graph for the motion of the car.

(b)	Find the value of a . [3]
		•
		•
(c)	Find the total time for which the car is in motion. [3]
		•

hori poir	lock B of mass 4 kg is pushed up a line of greatest slope of a smooth plane inclined at 30° to the zontal by a force applied to B , acting in the direction of motion of B . The block passes throughts P and Q with speeds $12 \mathrm{m s^{-1}}$ and $8 \mathrm{m s^{-1}}$ respectively. P and Q are $10 \mathrm{m}$ apart with P below level of Q .
(a)	Find the decrease in kinetic energy of the block as it moves from P to Q .
(b)	Hence find the work done by the force pushing the block up the slope as the block moves from P to Q .

© UCLES 2020 9709/43/M/J/20

Find the time taken, after this instant, for the block to return to P .	

A particle travels in a straight line PQ. The velocity of the particle t s after leaving P is v m s⁻¹, where

Find the velocity of the particle at the instant when its acceleration is zero.				
rind the velocity of the particle at the instant when its acceleration is zero.				

The particle comes to instantaneous rest at Q.

	Find the distance PQ . [6]
•	
•	

Two particles A and B, of masses $3m \, \mathrm{kg}$ and $2m \, \mathrm{kg}$ respectively, are attached to the ends of a light inextensible string. The string passes over a fixed smooth pulley which is attached to the edge of a plane. The plane is inclined at an angle θ to the horizontal. A lies on the plane and B hangs vertically, $0.8 \, \mathrm{m}$ above the floor, which is horizontal. The string between A and the pulley is parallel to a line of greatest slope of the plane (see diagram). Initially A and B are at rest.

(a)	Given that the plane is smooth, find the value of θ for which A remains at rest. [3]
It is	given instead that the plane is rough, $\theta = 30^{\circ}$ and the acceleration of A up the plane is 0.1 m s^{-2} .
(b)	Show that the coefficient of friction between A and the plane is $\frac{1}{10}\sqrt{3}$. [5]

© UCLES 2020 9709/43/M/J/20

•	
1	When B reaches the floor it comes to rest.
	Find the length of time after B reaches the floor for which A is moving up the plane. [You massume that A does not reach the pulley.]
•	
•	
•	
۰	
٠	
•	

Cambridge International AS & A Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

MATHEMATICS 9709/41

Paper 4 Mechanics

October/November 2020

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages. Blank pages are indicated.

A particle B of mass $5 \, \mathrm{kg}$ is at rest on a smooth horizontal table. A particle A of mass $2.5 \, \mathrm{kg}$ moves

(a)	Find the speed of the combined particle after the collision.	[2]
))	Find the loss of kinetic energy of the system due to the collision.	[3
b)		
))	Find the loss of kinetic energy of the system due to the collision.	
b)		
b)		
0)		
b)		
b)		
b)		
b)		
(b)		
(b)		
b)		

(a)	Find, in kW, the rate at which the engine of the car is working when it is travelling at a consequence of $20\mathrm{ms^{-1}}$.
(b)	Find the acceleration of the car when its speed is $20\mathrm{ms^{-1}}$ and the engine is working at $15\mathrm{k}$
(b)	
(b)	Find the acceleration of the car when its speed is $20\mathrm{ms^{-1}}$ and the engine is working at $15\mathrm{k}$
(b)	
(b)	
(b)	

Coplanar forces of magnitudes $8\,\mathrm{N}$, $12\,\mathrm{N}$, $10\,\mathrm{N}$ and $P\,\mathrm{N}$ act at a point in the directions shown in the diagram. The system is in equilibrium.

Find P and θ .	[6]

Eind the die	tance P moves b	ofore it comes	to instantance	root	Γ
rina the dis	tance F moves t	before it comes	to instantaneous	s test.	[(

Two particles of masses $0.8 \, \text{kg}$ and $0.2 \, \text{kg}$ are connected by a light inextensible string that passes over a fixed smooth pulley. The system is released from rest with both particles $0.5 \, \text{m}$ above a horizontal floor (see diagram). In the subsequent motion the $0.2 \, \text{kg}$ particle does not reach the pulley.

(a)	Show that the magnitude of the acceleration of the particles is $6 \mathrm{ms^{-2}}$ and find the tension in the string. [4]

1	When the 0.8 kg particle reaches the floor it comes to rest.	
	Find the greatest height of the 0.2 kg particle above the floor.	[3]
		• • • • • •
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

a)	Use an energy method to find the constant driving force as the car and trailer travel up the hill. [5]

After reaching the top of the hill the system consisting of the car and trailer travels along a straight level road. The driving force of the car's engine is 2400 N and the resistances to motion are unchanged.

 •••••
 ••••••
 ••••••
 ••••••
 •••••
 ••••••
 •••••

Three points A, B and C lie on a line of greatest slope of a plane inclined at an angle of 30° to the horizontal, with AB = 1 m and BC = 1 m, as shown in the diagram. A particle of mass 0.2 kg is released from rest at A and slides down the plane. The part of the plane from A to B is smooth. The part of the plane from B to C is rough, with coefficient of friction B between the plane and the particle.

(a)	Given that $\mu = \frac{1}{2}\sqrt{3}$, find the speed of the particle at C .	8]
		·••
		••
		••
		,
		. • •
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		· • •
		•••

		•••••
		••••••
		•••••
		••••••
(b)	Given instead that the particle comes to rest at C , find the exact value of μ .	[4]
		•••••
		•••••
		••••••
		•••••
		•••••
		••••••
		••••••
		••••••

Cambridge International AS & A Level

MATHEMATIC	es		9709/42
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

Paper 4 Mechanics

October/November 2020

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Blank pages are indicated.

BLANK PAGE

Two particles P and Q, of masses 0.2 kg and 0.5 kg respectively, are at rest on a smooth horizontal

(a)	Write down the momentum of P .	[1]
		•••••
		•••••
		•••••
		•••••
(b)	After the collision P continues to move in the same direction with speed $0.3 \mathrm{ms^{-1}}$.	
	Find the speed of Q after the collision.	[2]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••••
		•••••
		•••••

	ar of mass $1800\mathrm{kg}$ is travelling along a straight horizontal road. The power of the car's engine is stant. There is a constant resistance to motion of $650\mathrm{N}$.
(a)	Find the power of the car's engine, given that the car's acceleration is $0.5 \mathrm{ms^{-2}}$ when its speed is $20 \mathrm{ms^{-1}}$.
(b)	Find the steady speed which the car can maintain with the engine working at this power. [2]

A block of mass $m \log$ is held in equilibrium below a horizontal ceiling by two strings, as shown in the diagram. One of the strings is inclined at 45° to the horizontal and the tension in this string is T N. The other string is inclined at 60° to the horizontal and the tension in this string is 20 N.

Find T and m .	[5]

The diagram shows a velocity-time graph which models the motion of a car. The graph consists of four straight line segments. The car accelerates at a constant rate of $2 \,\mathrm{m\,s^{-2}}$ from rest to a speed of $20 \,\mathrm{m\,s^{-1}}$ over a period of T s. It then decelerates at a constant rate for 5 seconds before travelling at a constant speed of $V \,\mathrm{m\,s^{-1}}$ for 27.5 s. The car then decelerates to rest at a constant rate over a period of 5 s.

(a)	Find T .	[1]

speed is one third of the total distance travelled, find V .	[
	••••••
	•••••

Given that the particle is above the level of the top of the building for 4s , find h .	
	••••
	••••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••

		•••••				und.						[4]
				•••••								
			•••••	•••••			••••••					
	•••••		•••••	•••••				•••••		•••••		
	•••••	•••••		•••••				•••••				
	•••••	•••••		•••••				•••••				
•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	•••••	
•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	•••••	
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••••	•••••	•••••	•••••		
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••••	•••••	•••••	•••••		
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••			•••••	•••••		•••••		
•••••	•••••	•••••	• • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		••••••	•••••	•••••	•••••		
•••••	•••••	•••••	•••••	•••••			••••••	•••••		•••••		
•••••	•••••	•••••	•••••	•••••	•••••		••••••	•••••	•••••	•••••		
				•••••								
	•••••			•••••								
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	•••••		
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••			•••••	•••••		•••••		
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	•••••		
•••••	•••••	•••••	•••••	•••••	•••••		••••••	•••••	••••••	•••••	••••••	
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		••••••	••••••	•••••	•••••	•••••	••••••	
•••••	•••••	•••••	•••••	•••••								

A block of mass 5 kg is placed on a plane inclined at 30° to the horizontal. The coefficient of friction between the block and the plane is μ .

40 N 5 kg

(a)

Fig. 6.1

When a force of magnitude 40 N is applied to the block, acting up the plane parallel to a line of greatest slope, the block begins to slide up the plane (see Fig. 6.1).

Show that $\mu < \frac{1}{5}\sqrt{3}$.	[4]

(b)

Fig. 6.2

When a force of magnitude $40\,\mathrm{N}$ is applied horizontally, in a vertical plane containing a line of greatest slope, the block does not move (see Fig. 6.2).

Show that, correct to 3 decimal places, the least possible value of μ is 0.152.	[4]		

A particle P moves in a straight line, starting from a point O with velocity $1.72 \,\mathrm{m\,s^{-1}}$. The acceleration

Find 1	he value	of t who	en the	veloci	ty of I	P is 3	$m s^{-1}$.							[4]
••••••				•••••	•••••			•••••	•••••	•••••	•••••	•••••		
•••••	•••••	•••••	•••••		•••••			•••••	•••••		•••••		•••••	••••••
•••••	•••••		•••••	•••••	•••••			•••••			•••••			
•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••
•••••		•••••	•••••		•••••			•••••	•••••			•••••		
	•••••	•••••	•••••	•••••	•••••			•••••	•••••		•••••	•••••	•••••	•••••
••••••	•••••		•••••	•••••	•••••		•••••	•••••	•••••		•••••	•••••		
••••••	•••••		•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••
•••••	•••••		•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	
		•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••
•••••	•••••		•••••	•••••	•••••		•••••	•••••	••••••	•••••	•••••	•••••	••••••	••••••
•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••
	•••••		•••••		•••••			•••••	•••••		•••••			•••••
•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••
•••••			•••••		•••••	•••••	•••••	•••••	•••••					
•••••		•••••	•••••	•••••	•••••			•••••	•••••		•••••	•••••	••••••	•••••
•••••	•••••	•••••	•••••	••••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••
••••••	•••••		•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••		
••••••	•••••		•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••			
•••••			•••••	••••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
••••••	•••••		•••••	••••••	•••••		••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••
••••••	•••••	•••••	•••••	••••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••		

• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	•••••		•••••	•••••	•••••
• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
• • • • • • • • • • • • • • • • • • • •		•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••
••••••		•••••	••••••	••••••	••••••	••••••	••••••	••••••	•••••
				•••••	•••••				
• • • • • • • • •		•••••	••••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••
					•••••				
••••••				••••••					
•••••				•••••	•••••		•••••	•••••	•••••
•••••				•••••	•••••	•••••	•••••	••••••	
• • • • • • • • • • • • • • • • • • • •		•••••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •		••••••	
					•••••				
•••••	,	•••••	•••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
				••••••	•••••			•••••	

Two particles A and B, of masses 0.3 kg and 0.5 kg respectively, are attached to the ends of a light inextensible string. The string passes over a fixed smooth pulley which is attached to a horizontal plane and to the top of an inclined plane. The particles are initially at rest with A on the horizontal plane and B on the inclined plane, which makes an angle of 30° with the horizontal. The string is taut and B can move on a line of greatest slope of the inclined plane. A force of magnitude $3.5 \,\mathrm{N}$ is applied to B acting down the plane (see diagram).

(a)	Given that both planes are smooth, find the tension in the string and the acceleration of B . [5]

(b)	It is given instead that the two planes are rough. When each particle has moved a distance of 0.6 m from rest, the total amount of work done against friction is 1.1 J.							
	Use an energy method to find the speed of B when it has moved this distance down the plane. [You should assume that the string is sufficiently long so that A does not hit the pulley when it moves $0.6 \mathrm{m}$.]							

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/43

Paper 4 Mechanics

October/November 2020

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages. Blank pages are indicated.

(a)	Find ν .
(b)	Find the greatest height of P above the ground. [2]

	le of 20° to the horizontal. The box moves along a line of greatest slope against a frictional force of N. The force pulling the box is parallel to the line of greatest slope.
(a)	Find the work done against friction.
(b)	Find the change in gravitational potential energy of the box.
(c)	Find the work done by the pulling force.

`		
)	Draw a diagram showing all the forces acting on the block.	
)	Find the coefficient of friction between the block and the table.	

7. 1.1		1 011 .		
Find the two pos	sible values of the	loss of kinetic ene	rgy due to the collision.	[6
•••••	••••••	•••••		
	•••••	•••••		
•••••				
		•••••		

A particle P moves in a straight line. It starts at a point O on the line and at time t s after leaving O it

(a)	Find the values of t for which P is at instantaneous rest.	[2
(b)	Find the initial acceleration of P .	[2
(c)	Find the minimum velocity of P .	[2

•	
• •	
• •	
•	
• •	
•	
• •	
• •	•
• •	
•	•••••
• •	
•	•
• •	
•	•
• •	
•	•
• •	
• •	•
• •	
•	

A car of mass 1600 kg is pulling a caravan of mass 800 kg. The car and the caravan are connected

) The	car and caravan are travelling along a straight horizontal road.
(i)	Given that the car and caravan have a constant speed of $25 \mathrm{ms^{-1}}$, find the power of the car engine.
(**)	The control of the co
(11)	The engine's power is now suddenly increased to 39 kW. Find the instantaneous acceleration of the car and caravan and find the tension in the tow-bar. [5]

(b)	The car and caravan now travel up a straight hill, inclined at an angle of $\sin^{-1} 0.05$ to the horizontal, at a constant speed of $v \text{m s}^{-1}$. The car's engine is working at 32.5 kW.
	Find v . [3]

As shown in the diagram, particles A and B of masses $2 \, \text{kg}$ and $3 \, \text{kg}$ respectively are attached to the ends of a light inextensible string. The string passes over a small fixed smooth pulley which is attached to the top of two inclined planes. Particle A is on plane P, which is inclined at an angle of 10° to the horizontal. Particle B is on plane Q, which is inclined at an angle of 20° to the horizontal. The string is taut, and the two parts of the string are parallel to lines of greatest slope of their respective planes.

)	It is given that plane P is smooth, plane Q is rough, and the particles are in limiting equilibrium.	ıum.
	Find the coefficient of friction between particle B and plane Q .	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

(b)	It is given instead that both planes are smooth and that the particles are released from rest at the same horizontal level.
	Find the time taken until the difference in the vertical height of the particles is 1 m. [You should assume that this occurs before A reaches the pulley or B reaches the bottom of plane Q .] [6]

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

MATHEMATICS 9709/42

Paper 4 Mechanics

February/March 2021

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

Find the speed of P after the collision.	
	[3]
	••••••

whe	ar of mass 1400kg is travelling at constant speed up a straight hill inclined at α to the horizont ere $\sin \alpha = 0.1$. There is a constant resistance force of magnitude 600N . The power of the caine is $22 500 \text{W}$.
	Show that the speed of the car is $11.25 \mathrm{ms^{-1}}$.
	e car, moving with speed $11.25 \mathrm{ms^{-1}}$, comes to a section of the hill which is inclined at 2° to the hill which it is inclined at 2° to the hill which is inclined at 2° to the hill w
ori	car, moving with speed 11.25 m s ⁻¹ , comes to a section of the hill which is inclined at 2° to t izontal. Given that the power and resistance force do not change, find the initial acceleration of the cup this section of the hill.
ori	izontal. Given that the power and resistance force do not change, find the initial acceleration of the content
ori	izontal. Given that the power and resistance force do not change, find the initial acceleration of the content
ori	izontal. Given that the power and resistance force do not change, find the initial acceleration of the content
ori	izontal. Given that the power and resistance force do not change, find the initial acceleration of the content
ori	izontal. Given that the power and resistance force do not change, find the initial acceleration of the content
ori	izontal. Given that the power and resistance force do not change, find the initial acceleration of the content
ori	izontal. Given that the power and resistance force do not change, find the initial acceleration of the content
ori	izontal. Given that the power and resistance force do not change, find the initial acceleration of the content

© UCLES 2021 9709/42/F/M/21

A particle Q of mass 0.2 kg is held in equilibrium by two light inextensible strings PQ and QR. P is a fixed point on a vertical wall and R is a fixed point on a horizontal floor. The angles which strings PQ and QR make with the horizontal are 60° and 30° respectively (see diagram).

Find the tensions in the two strings.	[5]

An elevator moves vertically, supported by a cable. The diagram shows a velocity-time graph which models the motion of the elevator. The graph consists of 7 straight line segments.

The elevator accelerates upwards from rest to a speed of $2 \,\mathrm{m\,s^{-1}}$ over a period of $1.5 \,\mathrm{s}$ and then travels at this speed for $4.5 \,\mathrm{s}$, before decelerating to rest over a period of $1 \,\mathrm{s}$.

The elevator then remains at rest for $6 \, s$, before accelerating to a speed of $V \, \text{m s}^{-1}$ downwards over a period of $2 \, s$. The elevator travels at this speed for a period of $5 \, s$, before decelerating to rest over a period of $1.5 \, s$.

(a)	Find the acceleration of the elevator during the first 1.5 s.	[1]
		•••••
(1.)		503
(b)	Given that the elevator starts and finishes its journey on the ground floor, find V .	[2]
		•••••

© UCLES 2021 9709/42/F/M/21

		s decelera	ting.							
				•••••					•••••	
				•••••						
•••••	••••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
		•••••	••••••	•••••			•••••	•••••	•••••	
••••••	•••••••	••••••	••••••	••••••	•	•	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••			•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
•••••	•••••••••	••••••	••••••	•••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••••
•••••	•••••	•••••	•••••	•••••			•••••	•••••	•••••	
••••••	•••••••••	••••••	••••••	•••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
•••••	•••••		•••••	•••••			•••••	•••••	•••••	
••••••	•••••••••	••••••	••••••	•••••	•	•	••••••	••••••	••••••	••••••
••••••	•••••		••••••	•••••			•••••	•••••	•••••	
				•••••					• • • • • • • • • • • • • • • • • • • •	
•••••	••••••••••	••••••	••••••	•••••	•	•	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•
	•••••	•••••	•••••	•••••			•••••	•••••	•••••	
				•••••					•••••	
	•••••		•••••	•••••			•••••	•••••		••••••

A block of mass 5 kg is being pulled along a rough horizontal floor by a force of magnitude X N acting at 30° above the horizontal (see diagram). The block starts from rest and travels 2 m in the first 5 s of its motion.

(a)	Find the acceleration of the block.	[2]
(b)	Given that the coefficient of friction between the block and the floor is 0.4 , find X .	[4]

© UCLES 2021 9709/42/F/M/21

the	block is now placed on a part of the floor where the coefficient of friction between the block and floor has a different value. The value of X is changed to 25, and the block is now in limiting ilibrium.
(c)	Find the value of the coefficient of friction between the block and this part of the floor. [3]

a)	Find the displacement of the particle from O when $t = 1$. [4]

						•••
•••••••••	•••••	,	••••••	••••••	••••••	••••
•••••			•••••	• • • • • • • • • • • • • • • • • • • •		••••
	••••					
						••••
••••••	•••••		•••••••••	••••••		••••
•••••					•••••	••••
	•••••					••••
	•••••	•	••••••	•••••	•••••	••••
					•••••	••••
	••••					
	•••••					••••
•••••	•••••		••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••
	•••••					
•••••					•••••	••••
	••••					
	•••••			•••••		
•••••	•••••	•	•••••••	•••••	•••••	••••
	•••••					

Two particles P and Q of masses 0.5 kg and m kg respectively are attached to the ends of a light inextensible string. The string passes over a fixed smooth pulley which is attached to the top of two inclined planes. The particles are initially at rest with P on a smooth plane inclined at 30° to the horizontal and Q on a plane inclined at 45° to the horizontal. The string is taut and the particles can move on lines of greatest slope of the two planes. A force of magnitude 0.8 N is applied to P acting

down the plane, causing *P* to move down the plane (see diagram). (a) It is given that m = 0.3, and that the plane on which Q rests is smooth. Find the tension in the string. [5]

© UCLES 2021 9709/42/F/M/21

b)	It is given instead that the plane on which Q rests is rough, and that after each particle has moved a distance of 1 m, their speed is $0.6 \mathrm{ms^{-1}}$. The work done against friction in this part of the motion is $0.5 \mathrm{J}$. Use an energy method to find the value of m .						

Cambridge International AS & A Level

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

MATHEMATICS 9709/41

Paper 4 Mechanics May/June 2021

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages.

A winch operates by means of a force applied by a rope. The winch is used to pull a load of mass

ind the work done by the winch.	[

Two particles A and B have masses $m \log a$ and $0.1 \log a$ respectively, where m > 0.1. The particles are attached to the ends of a light inextensible string. The string passes over a fixed smooth pulley and the particles hang vertically below it. Both particles are at a height of $0.9 \, \text{m}$ above horizontal ground (see diagram). The system is released from rest, and while both particles are in motion the tension in the string is $1.5 \, \text{N}$. Particle B does not reach the pulley.

(a)	Find m .	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
(b)	Find the speed at which A reaches the ground.	[2]

nd	Q collide, P rebounds with speed 1 m s ⁻¹ .	
ı)	Find the speed of Q immediately after the collision with P .	[3]
		•••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
	ow collides with P. Immediately after the collision with Q. P. begins to make with speed V.m.	 c-1
	ow collides with R . Immediately after the collision with Q , R begins to move with speed V m. Given that there is no subsequent collision between P and Q , find the greatest possible vs of V .	
	Given that there is no subsequent collision between P and Q , find the greatest possible value of Q .	alue
	Given that there is no subsequent collision between P and Q , find the greatest possible value of Q .	alue
	Given that there is no subsequent collision between P and Q , find the greatest possible value of Q .	alue
	Given that there is no subsequent collision between P and Q , find the greatest possible value of Q .	alue
	Given that there is no subsequent collision between P and Q , find the greatest possible value of Q .	alue
	Given that there is no subsequent collision between P and Q , find the greatest possible value of Q .	alue
	Given that there is no subsequent collision between P and Q , find the greatest possible value of Q .	alue
	Given that there is no subsequent collision between P and Q , find the greatest possible value of Q .	alue

4 Two cyclists, Isabella and Maria, are having a race. They both travel along a straight road with constant acceleration, starting from rest at point *A*.

Isabella accelerates for 5 s at a constant rate $a \,\mathrm{m\,s^{-2}}$. She then travels at the constant speed she has reached for 10 s, before decelerating to rest at a constant rate over a period of 5 s.

Maria accelerates at a constant rate, reaching a speed of $5 \,\mathrm{m\,s^{-1}}$ in a distance of 27.5 m. She then maintains this speed for a period of $10 \,\mathrm{s}$, before decelerating to rest at a constant rate over a period of $5 \,\mathrm{s}$.

G	iven that $a = 1.1$, find which cyclist travels further.	
•••		
•••		
•••		
•••		
•••		
•••		
•••		
Fi	and the value of a for which the two cyclists travel the same distance.	
- • •		

5	A particle moving in a straight line starts from rest at a point A and comes instantaneously to rest at a
	point B. The acceleration of the particle at time t s after leaving A is $a \mathrm{ms^{-2}}$, where

$$a = 6t^{\frac{1}{2}} - 2t.$$

	Find the value of t at point B .
•	
•	
•	

zero.									
	•••••					• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
						•••••			
	•••••								
						•••••		•••••	
•••••						•••••		•••••	
• • • • • • • • • • • • • • • • • • • •					•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • •		•••••			•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	•••••	•••••			•••••	•••••		• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
• • • • • • • •	•••••	•••••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••
•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
• • • • • • • • •	•••••	•••••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••••	••••••	••••••
	•••••			•	•••••	•	•	•	
	•••••								
	•••••					• • • • • • • • • • • • • • • • • • • •			
	•••••								

Three coplanar forces of magnitudes $10 \, \text{N}$, $25 \, \text{N}$ and $20 \, \text{N}$ act at a point O in the directions shown in the diagram.

(a)	Given that the component of the resultant force in the x-direction is zero, find α , and hence fit the magnitude of the resultant force.					

(b)	Given instead that $\alpha = 45$, find the magnitude and direction of the resultant of the three forces	ces. [5]
		· • • • • • • • • • • • • • • • • • • •

A slide in a playground descends at a constant angle of 30° for 2.5 m. It then has a horizontal section in the same vertical plane as the sloping section. A child of mass 35 kg, modelled as a particle P, starts from rest at the top of the slide and slides straight down the sloping section. She then continues along the horizontal section until she comes to rest (see diagram). There is no instantaneous change in speed when the child goes from the sloping section to the horizontal section.

The child experiences a resistance force on the horizontal section of the slide, and the work done against the resistance force on the horizontal section of the slide is 250 J per metre.

(a)	It is	given that the sloping section of the slide is smooth.
	(i)	Find the speed of the child when she reaches the bottom of the sloping section. [3]
	(ii)	Find the distance that the child travels along the horizontal section of the slide before she comes to rest. [2]

Find t	the coeffic	eient of frict	ion betwe	en the cl	nild and t	the slopin	g section	of the sl	ide.	
•••••										
••••••	•••••	••••••	•••••	••••••	••••••	••••••	•••••	•••••	•••••	•••••
•••••	•••••		•••••	•••••	•••••	•••••		•••••		•••••
								•••••		•••••
•••••								•••••		•••••
	•••••							•••••		•••••
										••••
	•••••									
••••••	•••••		••••••	••••••	••••••	••••••	••••••	•••••	•••••	
•••••	•••••			••••••	••••••	••••••	••••••	•••••		•••••
•••••	••••••		•••••	•••••	•••••	•••••	••••••	•••••		•••••
•••••								•••••		••••
•••••								•••••		••••
	•••••							•••••		•••••
	•••••		•••••							••••
••••••	•••••			•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••

Cambridge International AS & A Level

CANDIDATE NAME									
CENTRE NUMBER						NDIDA IMBER			

MATHEMATICS 9709/42

Paper 4 Mechanics May/June 2021

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages.

-	A particle of mass 0.6kg is projected with a speed of 4m s^{-1} down a line of greatest slope of a smooth plane inclined at 10° to the horizontal.								
	Use an energy method to find the speed of the particle after it has moved 15 m down the plane. [3]								

Coplanar forces of magnitudes $34\,N$, $30\,N$ and $26\,N$ act at a point in the directions shown in the diagram.

Given that $\sin \alpha = \frac{5}{13}$ and $\sin \theta = \frac{8}{17}$, find the magnitude and direction of the resultant of the three proces.	
	••
	••
	••
	••
	••
	••
	••

above the horizontal in the vertical plane containing the rod. Find the time taken for the ring to move, from rest, 0.6 m along the rod. [6]						
Find the time	taken for the rii	ng to move, fr	om rest, 0.6 r	n along the roo	1.	[6]
				•••••		
•	•••••		••••••	••••••	••••••	•••••
	•••••		•••••	•••••	•••••	•••••
			•••••	•••••		
	•••••	••••••••••••	•••••	•••••	•••••	••••••
			•••••			
			••••••	•••••		
				••••••		
	•••••		••••••	••••••	••••••	•••••
			•••••	•••••		
				•••••		
•••••			•••••	••••••		
				•••••		•••••

A particle of mass 12 kg is stationary on a rough plane inclined at an angle of 25° to the horizontal. A

Find the greatest possible value of P .	

A car of mass 1250 kg is pulling a caravan of mass 800 kg along a straight road. The resistances to the

The	car and caravan move along a horizontal part of the road at a constant speed of $30\mathrm{ms^{-1}}$	•
(i)	Calculate, in kW, the power developed by the engine of the car.	[2
		••••
		••••
		••••
		••••
		••••
		••••
		••••
(ii)	Given that this power is suddenly decreased by 8 kW, find the instantaneous deceleration the car and caravan and the tension in the tow-bar.	
(ii)		[4
(ii)	the car and caravan and the tension in the tow-bar.	[4
(ii)	the car and caravan and the tension in the tow-bar.	
(ii)	the car and caravan and the tension in the tow-bar.	[4
(ii)	the car and caravan and the tension in the tow-bar.	[4
(ii)	the car and caravan and the tension in the tow-bar.	[4
(ii)	the car and caravan and the tension in the tow-bar.	
(ii)	the car and caravan and the tension in the tow-bar.	
(ii)	the car and caravan and the tension in the tow-bar.	
(ii)	the car and caravan and the tension in the tow-bar.	

(1)	Find this constant speed.	
		•••
		•••
(ii)	Find the increase in the potential energy of the caravan in one minute.	

A particle A is projected vertically upwards from level ground with an initial speed of $30\,\mathrm{m\,s^{-1}}$. At

Find the differ	ence between th	e two possible	times at whic	h C hits the ground	1.
••••••	••••••	•••••	••••••••••		••••••
••••••	•••••	•••••	•••••••••••		••••••
••••••	•••••	•••••			
	•••••		•••••		
••••••	•••••••••••	•••••	•••••••••••		••••••
••••••	•••••	•••••	••••••	•••••	••••••
•••••••••••••••••••••••••••••••••••••••	••••••	•••••	••••••••••	••••••	•••••••••••

· • • •
· • • •
 · • • •
 · • • •
••••
· • • •
••••
· • • •
••••
· • • •
••••
,
••••
· • • •

7	A particle P moving in a straight line starts from rest at a point O and comes to rest 16 s later.	At time
	t s after leaving O, the acceleration $a \text{ m s}^{-2}$ of P is given by	

$$a = 6 + 4t$$
 $0 \le t < 2$,
 $a = 14$ $2 \le t < 4$,
 $a = 16 - 2t$ $4 \le t \le 16$.

There is no sudden change in velocity at any instant.

(a)	Find the values of t when the velocity of P is 55 m s ⁻¹ .	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

(b) Complete the sketch of the velocity-time diagram.

[2]

(c)	Find the distance travelled by <i>P</i> when it is decelerating.	[3]
		•••••
		•••••
		•••••
		•••••

Cambridge International AS & A Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

MATHEMATICS 9709/43

Paper 4 Mechanics May/June 2021

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages.

Find the two p	oossible values	of the speed of	P after the coll	ision.	[4]
•••••	•••••	•••••	•••••		
		•••••		•••••	•••••
	•••••	•••••			
		•••••		•••••	•••••
	•••••	•••••			
•	•••••	•••••			
			•••••		
	•••••				

` /	Find the total mass of the cyclist and her bicycle.
unc	cyclist comes to a straight hill inclined at an angle θ above the horizontal. She ascends the stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the resistance for hanged.
unc	stant speed 3 m s ⁻¹ . She continues to work at the same rate as before and the resistance for
unc	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the resistance for hanged.
unc	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the resistance for hanged.
unc	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the resistance for hanged.
unc	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the resistance for hanged.
unc	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the resistance for hanged.

Four coplanar forces act at a point. The magnitudes of the forces are 20 N, 30 N, 40 N and F N. The directions of the forces are as shown in the diagram, where $\sin \alpha^{\circ} = 0.28$ and $\sin \beta^{\circ} = 0.6$.

Given that the forces are in equilibrium, find F and θ .	[6]
	••••••
	••••••
	••••••
	•••••

		article is projected vertically upwards with speed $u \text{m s}^{-1}$ from a point on horizontal ground. After conds, the height of the particle above the ground is 24 m.							
(8	a)	Show that $u = 22$. [2]							
(I	b)	The height of the particle above the ground is more than h m for a period of 3.6 s.							
		Find h . [4]							

5	to th	ar of mass 1400kg is towing a trailer of mass 500kg down a straight hill inclined at an angle of 5° ne horizontal. The car and trailer are connected by a light rigid tow-bar. At the top of the hill the ed of the car and trailer is 20m s^{-1} and at the bottom of the hill their speed is 30m s^{-1} .									
	(a)	It is given that as the car and trailer descend the hill, the engine of the car does 150 000 J of work, and there are no resistance forces.									
		Find the length of the hill. [5]									

]	Find the tension in the tow-bar between the car and trailer.
	and the tension in the tow our services the cur and trailer.
•	
•	
٠	
•	
•	
•	
•	
•	
•	
٠	
•	
•	

6	A particle moves in a straight line and passes through the point A at time $t = 0$. The velocity of the
	particle at time t s after leaving A is v m s ⁻¹ , where
	$v = 2t^2 - 5t + 3.$

(a)	Find the times at which the particle is instantaneously at rest. Hence or otherwise find the minimum velocity of the particle. [4]
(b)	Sketch the velocity-time graph for the first 3 seconds of motion. [3]

• • • • • •	•••••			•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••
	•••••			•••••	•••••			•••••		•••••	•••••	•••
								•••••		•••••		• • •
										•••••		•••
					•••••							• • •
	•••••			•••••								•••
												•••
	•••••			•••••								•••
												•••
	•••••			•••••								•••
												•••
												•••
	•••••			•••••								•••
												•••
												. • •
										•••••	•••••	•••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••	••••••	•••••	•••••	•••••	•••••	•••••	• • •

A particle P of mass 0.3 kg rests on a rough plane inclined at an angle θ to the horizontal, where $\sin \theta = \frac{7}{25}$. A horizontal force of magnitude 4 N, acting in the vertical plane containing a line of greatest slope of the plane, is applied to P (see diagram). The particle is on the point of sliding up the plane.

(a)	Show that the coefficient of friction between the particle and the plane is $\frac{3}{4}$.	[4]
	force acting horizontally is replaced by a force of magnitude 4 N acting up the plane of greatest slope.	e parallel to a
(b)	Find the acceleration of P .	[3]

,		
		•••••
,	Starting with P at rest, the force of 4 N parallel to the plane acts for 3 seconds and is	then remove
	Find the total distance travelled until P comes to instantaneous rest.	[
		•••••
		• • • • • • • • • • • • • • • • • • • •
,		

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDID/ NUMBEF		
	20				

MATHEMATICS 9709/41

Paper 4 Mechanics

October/November 2021

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages.

)	Find the constant speed of the bus.	[2]
,		
		•••••
		•••••
		••••••
	Find the magnitude of the deceleration.	[1]

Two small smooth spheres A and B, of equal radii and of masses $km \log a$ and $m \log a$ respectively, where

Find k .	[3
Find, in terms of m , the loss of kinetic energy due to the collision.	[2

Coplanar forces of magnitudes $24 \, \text{N}$, $P \, \text{N}$, $20 \, \text{N}$ and $36 \, \text{N}$ act at a point in the directions shown in the diagram. The system is in equilibrium.

Given that $\sin \alpha = \frac{3}{5}$, find the values of P and θ .	[6]

A fo	A particle of mass 12 kg is stationary on a rough plane inclined at an angle of 25° to the horizontal A force of magnitude PN acting parallel to a line of greatest slope of the plane is used to prevent the particle sliding down the plane. The coefficient of friction between the particle and the plane is 0.35.				
(a)	Draw a sketch showing the forces acting on the particle.	[1]			
(b)	Find the least possible value of P .	[5]			
		•••••			
		•••••			
		•••••			
		•••••			
		•••••			
		•••••			
		•••••			

A car of mass 1600 kg travels at constant speed 20 m s⁻¹ up a straight road inclined at an angle of

) [Find the change in potential energy of the car in 30 s.	
		•••••••
	Given that the total work done by the engine of the car in this time is 1960 kJ, fi	
	Given that the total work done by the engine of the car in this time is 1960 kJ, fi force resisting the motion.	
		and the co
	force resisting the motion.	and the co
	force resisting the motion.	and the co
	force resisting the motion.	and the co
	force resisting the motion.	and the co
	force resisting the motion.	and the co
	force resisting the motion.	and the co
	force resisting the motion.	ind the co
	force resisting the motion.	ind the co
	force resisting the motion.	ind the co
	force resisting the motion.	ind the co

	•••••	•••••	•••••	•••••	•••••	•••••	••••••
					•••••		
•••••		•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
			•••••	•••••	•••••	•••••	•••••
•••••	•••••	•••••	•••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
				•••••	•••••		•••••
						• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
Given that t	this power is s	suddenly de	creased by	15%, find t	the instanta	aneous dec	celeration
car.	this power is s						
car.							
car.							
car.							
car.							
car.							
car.							
car.							
car.							
car.							
car.							
car.							
car.							
car.							
car.							
car.							
car.							

6	A particle P moves in a straight line starting from a point O and comes to rest 14 s later. At time t s
	after leaving O , the velocity $v \mathrm{m s^{-1}}$ of P is given by

$$v = pt^{2} - qt$$
 $0 \le t \le 6$,
 $v = 63 - 4.5t$ $6 \le t \le 14$,

where p and q are positive constants.

The acceleration of P is zero when t = 2.

(a)	Given that there are no instantaneous changes in velocity, find p and q . [3]
(b)	Sketch the velocity-time graph. [3]

•••••
••••••
 •••••
•••••
 •••••

Two particles A and B of masses $2 \log$ and $3 \log$ respectively are connected by a light inextensible string. Particle B is on a smooth fixed plane which is at an angle of 18° to horizontal ground. The string passes over a fixed smooth pulley at the top of the plane. Particle A hangs vertically below the pulley and is 0.45 m above the ground (see diagram). The system is released from rest with the string taut. When A reaches the ground, the string breaks.

Find the total distance travelled by B before coming to instantaneous rest. You may assume that B does not reach the pulley. [8]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.											

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME							
CENTRE NUMBER				CANDID NUMBE			

MATHEMATICS 9709/42

Paper 4 Mechanics

October/November 2021

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages.

The diagram shows a velocity-time graph which models the motion of a car. The graph consists of six straight line segments. The car accelerates from rest to a speed of $20 \,\mathrm{m\,s^{-1}}$ over a period of 5 s, and then travels at this speed for a further $20 \,\mathrm{s}$. The car then decelerates to a speed of $6 \,\mathrm{m\,s^{-1}}$ over a period of 5 s. This speed is maintained for a further $(T-30) \,\mathrm{s}$. The car then accelerates again to a speed of $20 \,\mathrm{m\,s^{-1}}$ over a period of $(50-T) \,\mathrm{s}$, before decelerating to rest over a period of $10 \,\mathrm{s}$.

(a)	Given that during the two stages of the motion when the car is accelerating, the accelerations are equal, find the value of T .	
		•
		•
		•
		•
(h)		1
	Find the total distance travelled by the car during the motion. [2]	J
(6)	Find the total distance travelled by the car during the motion.	
		•
		•
		•

Find the tension in the rope.		The driving force exerted by the van is 2500 N.
The driving force is now removed and the van driver applies a braking force which acts only o		Find the tension in the rope.
Γhe driving force is now removed and the van driver applies a braking force which acts only o		
The driving force is now removed and the van driver applies a braking force which acts only o		
The driving force is now removed and the van driver applies a braking force which acts only o		
The driving force is now removed and the van driver applies a braking force which acts only o		
The driving force is now removed and the van driver applies a braking force which acts only o		
The driving force is now removed and the van driver applies a braking force which acts only o		
The driving force is now removed and the van driver applies a braking force which acts only o		
The driving force is now removed and the van driver applies a braking force which acts only o		
The driving force is now removed and the van driver applies a braking force which acts only o		
b) Find the least possible value of the braking force which will cause the rope to become slack.		Find the least possible value of the braking force which will cause the rope to become slack
	b)	Time the rease possible value of the oraning roses which will cause the rope to become stack
	b)	
	b)	
	b)	
	b)	
	b)	

The diagram shows a semi-circular track ABC of radius 1.8 m which is fixed in a vertical plane. The points A and C are at the same horizontal level and the point B is at the bottom of the track. The section AB is smooth and the section BC is rough. A small block is released from rest at A.

(a)	Show that the speed of the block at B is $6 \mathrm{m s^{-1}}$.	[2]
		•••
		•••
		•••
		•••
	block comes to instantaneous rest for the first time at a height of $1.2 \mathrm{m}$ above the level of B . To done against the resistance force during the motion of the block from B to this point is $4.5 \mathrm{J}$.	he
(T.)		
(b)	Find the mass of the block.	[3]
(b)	Find the mass of the block.	
(b)	Find the mass of the block.	
(b)	Find the mass of the block.	
(b)	Find the mass of the block.	
(b)	Find the mass of the block.	
(b)	Find the mass of the block.	

4	A cyclist starts from rest at a point A and travels along a straight road AB, coming to rest at B.	The
	displacement of the cyclist from A at time t s after the start is s m, where	

$s = 0.004(75t^2 - t)$	3).
------------------------	-----------

(a)	Show that the distance AB is 250 m.	[4]
(b)	Find the maximum velocity of the cyclist.	[3]

whe	ilway engine of mass 75 000 kg is moving up a straight hill inclined at an angle α to the horizontal re $\sin \alpha = 0.01$. The engine is travelling at a constant speed of $30 \mathrm{ms^{-1}}$. The engine is working $60 \mathrm{kW}$. There is a constant force resisting the motion of the engine.
(a)	Find the resistance force. [3

The engine comes to a section of track which is horizontal. At the start of the section the engine is travelling at $30\,\mathrm{m\,s^{-1}}$ and the power of the engine is now reduced to $900\,\mathrm{kW}$. The resistance to motion is no longer constant, but in the next $60\,\mathrm{s}$ the work done against the resistance force is $46\,500\,\mathrm{kJ}$.

(b)	Find the speed of the engine at the end of the 60 s.	[4]
		••••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

A block of mass $5 \, \text{kg}$ is held in equilibrium near a vertical wall by two light strings and a horizontal force of magnitude $X \, \text{N}$, as shown in the diagram. The two strings are both inclined at 60° to the vertical.

(a)	Given that $X = 100$, find the tension in the lower string.	[4]

•	Find the least value of X for which the block remains in equilibrium in the position shown.
•	
•	
•	
•	
•	
•	
•	
•	

Particles P and Q have masses $m \log$ and $2m \log$ respectively. The particles are initially held at rest 6.4 m apart on the same line of greatest slope of a rough plane inclined at an angle α to the horizontal, where $\sin \alpha = 0.8$ (see diagram). Particle P is released from rest and slides down the line of greatest slope. Simultaneously, particle Q is projected up the same line of greatest slope at a speed of $10 \,\mathrm{m \, s^{-1}}$. The coefficient of friction between each particle and the plane is 0.6.

(a)	Show that the acceleration of Q up the plane is $-11.6 \mathrm{m s^{-2}}$.	[4]
(b)	Find the time for which the particles are in motion before they collide.	[5]

••	•••••						
				•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
• •	•••••			•••••	•••••	•••••	•••••
••	•••••	, 	•••••••	•••••		••••••	••••••
••	••••••	· • • • • • • • • • • • • • • • • • • •	•••••••••	••••••	••••••	••••••	••••••
				•••••			
••				•••••			•••••
••	•••••			•••••	•••••	•••••	•••••
	The particles coal			mmediately	after the imp	act.	
				mmediately	after the imp	act.	
				mmediately	after the imp		
				mmediately	after the imp		
				mmediately	after the imp		
				mmediately	after the imp		
				mmediately	after the imp		
F 				mmediately	after the imp		
F 	ind the speed of			mmediately	after the imp		
F	ind the speed of			mmediately	after the imp		
F 	ind the speed of			mmediately	after the imp		
F 	ind the speed of			mmediately	after the imp		
F 	ind the speed of			mmediately	after the imp		
	ind the speed of	the combine	ed particle i				
	ind the speed of	the combine	ed particle i				
	ind the speed of	the combine	ed particle i				
	ind the speed of	the combine	ed particle i				
	ind the speed of	the combine	ed particle i				
	ind the speed of	the combine	ed particle i				
 	ind the speed of	the combine	ed particle i				
	ind the speed of	the combine	ed particle i				

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the questions the clearly shown.	stion number(s)
	••••••
	••••••
	••••••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

MATHEMATICS 9709/43

Paper 4 Mechanics

October/November 2021

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages. Any blank pages are indicated.

BLANK PAGE

A metal post is driven vertically into the ground by dropping a heavy object onto it from above. The mass of the object is $120\,\mathrm{kg}$ and the mass of the post is $40\,\mathrm{kg}$ (see diagram). The object hits the post with speed $8\,\mathrm{m\,s^{-1}}$ and remains in contact with it after the impact.

(a)	Calculate the speed with which the combined post and object moves immediately after the impact. [2]
(b)	There is a constant force resisting the motion of magnitude 4800 N.
	Calculate the distance the post is driven into the ground. [3]

A particle of mass 8 kg is suspended in equilibrium by two light inextensible strings which make

ang	les of 60° and 45° above the horizontal.	
(a)	Draw a diagram showing the forces acting on the particle.	[1]
(b)	Find the tensions in the strings.	[6]
		•••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

A ball of mass 1.6 kg is released from rest at a point 5 m above horizontal ground. When the ball hits

		greatest height that the ball reaches after hitting the gro	
			•••••
			• • • • •
			• • • • •
			• • • • •
			••••
	Find the total time taken, from the	e initial release of the ball until it reaches this greatest h	nei
)	Find the total time taken, from the	e initial release of the ball until it reaches this greatest h	nei
)	Find the total time taken, from the	e initial release of the ball until it reaches this greatest h	nei;
	Find the total time taken, from the	e initial release of the ball until it reaches this greatest h	nei
	Find the total time taken, from the	e initial release of the ball until it reaches this greatest h	neiį
	Find the total time taken, from the	e initial release of the ball until it reaches this greatest h	nei
	Find the total time taken, from the	e initial release of the ball until it reaches this greatest h	nei
	Find the total time taken, from the	e initial release of the ball until it reaches this greatest h	nei,
,	Find the total time taken, from the	e initial release of the ball until it reaches this greatest h	nei
)	Find the total time taken, from the	e initial release of the ball until it reaches this greatest h	nei
,	Find the total time taken, from the	e initial release of the ball until it reaches this greatest h	nei

ı) '	The	car moves along a horizontal section of the road at a constant speed of $36 \mathrm{ms^{-1}}$.	
	(i)	Calculate the work done against the resisting force during the first 8 seconds.	[2]
	(ii)	Calculate, in kW, the power developed by the engine of the car.	[2]
			••••••

` .	i) Given that this power is suddenly increased by 12 kW, find of the car.]
hor	e car now travels at a constant speed of 32 m s ⁻¹ up a section or rizontal, with the engine working at 64 kW.	
hor		of the road inclined at $ heta^\circ$ to t
hor	rizontal, with the engine working at 64 kW.	
hor	rizontal, with the engine working at 64 kW.	
hor	rizontal, with the engine working at 64 kW.	
hor	rizontal, with the engine working at 64 kW.	
hor	rizontal, with the engine working at 64 kW.	
hor	rizontal, with the engine working at 64 kW.	
hor	rizontal, with the engine working at 64 kW.	
hor	rizontal, with the engine working at 64 kW.	
hor	rizontal, with the engine working at 64 kW.	

Show that $s = \frac{1}{64}t^2(96 - t^2)$.
64 (75 7)

		•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • •
••••••	•	•••••	••••••	•••••	••••••	••••••	•••••	••••••	•••••
		•••••	•••••	•••••			•••••	•••••	•••••
									•••••
				•••••					•••••
									•••••
Find the m	aximum d	lisplacen	ment of t	he particl	e from O.				
Find the m	aximum d	lisplacen	nent of t	he particl	e from <i>O</i> .				
Find the m	aximum d	lisplacer	nent of t	he particl	e from <i>O</i> .				
Find the m	aximum d	lisplacen	ment of t	he particl	e from O.				
Find the m	aximum d	lisplacen	nent of t	he particl	e from O.				
Find the m	aximum d	lisplacer	nent of t	he particl	e from O.				
Find the m	aximum d	lisplacer	nent of t	he particl	e from O.				
Find the m	aximum d	lisplacen	ment of t	he particl	e from O.				
Find the m	aximum d	lisplacen	nent of t	he particl	e from O.				
Find the m	aximum d	lisplacer	ment of t	he particl	e from O.				
Find the m	aximum d	lisplacen	ment of t	he particl	e from O.				
Find the m	aximum d	lisplacen	nent of t	he particl	e from O.				

The diagram shows a particle of mass 5 kg on a rough horizontal table, and two light inextensible strings attached to it passing over smooth pulleys fixed at the edges of the table. Particles of masses 4 kg and 6 kg hang freely at the ends of the strings. The particle of mass 6 kg is 0.5 m above the ground. The system is in limiting equilibrium.

(a)	Show that the coefficient of friction between the 5 kg particle and the table is 0.4.	[2]
The	e 6 kg particle is now replaced by a particle of mass 8 kg and the system is released fr	om rest.
(b)	Find the acceleration of the 4 kg particle and the tensions in the strings.	[5]

In the subsequent motion the 8 kg particle hits the ground and does not rebound.
Find the time that elapses after the 8 kg particle hits the ground before the other two particles come to instantaneous rest. (You may assume this occurs before either particle reaches a pulley.) [5]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.